
KeeeX Universally Verifiable Files V2 2025 (1.1)

KeeeX Universally Verifiable Files

Understanding KeeeX Metadata Statements v2.0
This document is Copyright KeeeX 2025 - All Rights Reserved - https://keeex.me

Some features described here are in the scope of pending or delivered patents owned by
KeeeX SAS

This document explains and documents the concepts and features made available by KeeeX
Fusion v2.0 and complements or replaces the white paper made public under the name White-
Paper-KeeeX-keeexed-xopok-nybum.pdf (that can be retrieved by web searching 'xopok-
nybum').

Authors: the KeeeX Team

Abstract
KeeeX provides tools and technology required to make files verifiable

in autonomy

without perceived alteration of their content and behavior whenever possible

for long lasting durations

regardless of their format

using lightweight metadata.

A keeexed verifiable file has the property that unless otherwise stated any bitwise change or
addition to the file can be detected, either because the payload, or hash or signature was
edited. A file cannot be re-signed and still remain valid, but powerful mechanisms of indirect
and delegated signatures are provided.
Entire file verifiability also covers the entire freely
embedded technical and user metadata useful for automation, labelling, provenance, bindings
that were injected in the file.

Making verifiability independent from the file format has paramount importance in that it helps
file verifiers to not track file format changes and thus easily retain backward compatibility. Only
changes in the specification matter, which very seldom happens. This form of universality is
crucial to large scale industrial deployments.

Making files bitwise unforgeable is important, but modern requirements ask for unforgeable
files to be attached dynamic information under control (think about newer/latest versions,
owner, obsolescence or completion status, requirement to destroy...). This is possible by either

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

https://keeex.me/

KeeeX Universally Verifiable Files V2 2025 (1.1)

writing inside file themselves when applicable or by by-directionally binding file properties to
arbitrary registries (blockchain included). This last feature is patented.

Keeping the verification metadata lightweight has superior importance in the context of
generative AI and mass production / streaming / storage of content.

This document describes the concepts and features via the KeeeX metadata language used
within verifiable files, possibly including the one you're reading. KeeeX metadata can be easily
found using a simple text editor, even on binary files. Reading this should help an engineer
understand what is under the hood, or convince themselves that manual verification is
possible. It also explains a number of extra features, including how files are linked to their
references and versions, how they can be indexed by their embedded hash (called their IDX),
how some files may display or exploit this IDX, how files can maintain unforgeable links to
variable properties stored in registries or the blockchain and more.

The KeeeX metadata is present in files at positions that do not interfere with its usual behavior,
which is almost always possible. For instance, a comment is used to host them in html files
and many other program files.

Table of Contents
Introduction and Core concepts
Explaining the KeeeX Statements Version 2.0

Rationale
Frugality
Auditabity, readability
Security, resistance to injection attacks
Human use, indexability
Sovereignty
Durability

Quick overview of the KeeeX metadata statements
Examples

Metadata in a document file keeexed using KeeeX Fusion
Metadata in a Photo file produced and keeexed using Collect And Prove

Syntax Overview
Text encoding
Statements location
Statement values delimiters
Extra statement property

Statement types
Extra property valid with any statement type

`kx.height` extra (numeric)
Statement `self` (file identifier)

IDX computation for verification
`kx.main` extra for 'self' (numeric)

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

`kx.subversion` extra for 'self' (numeric)
`kx.app` extra for 'self' (string)
`kx.archive` extra for 'self' (numeric)
`kx.id` extra for 'self' (numeric)
`kx.algorithm` extra for 'self' (string)
`kx.encoding` extra for 'self' (string)
`kx.decode` extra for 'self' (string)
`kx.recursive` extra for 'self' (boolean)

Statement `name` (file name)
`kx.main` extra for 'name' (boolean)

Statement `prop` (file property)
`kx.base64` extra for 'prop' (boolean)

Statement `ref` (IDR reference)
`kx.previous` extra for 'ref' (boolean)
`kx.feature` extra for 'ref' (string)
`kx.link` extra for 'ref' (string)

Statement `signature` (digital signature)
IDX computation
Signature subject
Signature placeholder
`bitcoin` signature (parameter value of `kx.sigType` extra for 'signature')
`x509` signature (parameter value of `kx.sigType` extra for 'signature')
Complex addresses

`kx.indirect` extra for 'signature' (boolean)
`kx.delegate` extra for 'signature' (boolean)

`kx.topicId` extra for 'signature' (numeric)
`kx.role` extra for 'signature' (string)
`kx.name` extra for 'signature' (string)
`kx.ts` extra for 'signature' (boolean)
`kx.optional` extra for 'signature' (boolean)

Statement `license` (user license)
Online mode
Offline mode

Statement `reserved` (reserved space with restrictions)
IDX computation
`kx.id` extra for 'reserved' (numeric)
`kx.htmlComment` extra for 'reserved' (boolean)
`kx.transaction` extra for 'reserved' (boolean)
`kx.base64` extra for 'reserved' (boolean)
`kx.flexible` extra for 'reserved' (boolean)

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

`kx.indirectSignature` extra for 'reserved' (boolean)
`kx.delegation` extra for 'reserved' (boolean)

Computing identifiers (IDX, self)
Conclusion
ANNEX 1 Special reserved fields

`kx.indirectSignature`extra for `reserved` statement
`kx.delegation`extra for `reserved` statement
RFC3161 timestamps
Blockchain anchoring

ANNEX 2 Special refs
Rollup files (certificates)
Non production files
Geolocated files
Mail+Attachments zip files

ANNEX 3 Special properties
Prop `kx.author`
Prop `kx.description`
Prop `kx.time`
Prop `kx.revert`
Prop`kx.identityURL`
Prop`kx.afterbc`
Prop `kx.blockchain`
Family of Properties`kx.geolocation...`
Prop `kx.exclude` (subversion 1)
Prop`kx.format`
Prop `kx.copyright`
Prop `kx.classification`
Prop `kx.usageRestrictions`

ANNEX 4 Computing a multi-hash output
Basic layout
Hash identifier
Quick analysis
Choice of algorithms

1. Introduction and Core concepts
The main idea of KeeeX is to achieve the verifiability of a file’s integrity, authenticity, date,
provenance, metadata in general regardless of it’s format, in such a way that a file carries its
own proofs without perceived alteration and that the full range of file bytes are protected unless
otherwise stated.

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

Verifiability can be achieved independent from the format thanks to a simple tag based
metadata language where an easily identified marker (the pattern keeex ... xeeek) allows for
locating metadata within files, a key metadata component being the self statement that
contains the file's own hash, as will be explained below.

Making verification independent from file formats allows for implementing and delivering
verifiers that stay valid for long durations, major releases of the metadata language being
seldom (version 1 has lasted since 2013). Minor releases always preserve upward compatibility
and as of V2.0 all files declare the version of KeeeX Fusion (the 'keeexer') that was used to
produce them.

Furthermore, the KeeeX metadata language provides a wealth of added value over standard
hashing schemes. Most importantly comes the fact that the very own file’s hash (called its IDX)
can be used as a Digital Object Identifier (DOI) for the file. This is so because this hash will
differ whichever bitwise change occurs to the file).

To explain this, consider a file containing embedded KeeeX metadata with:

1. a hash (IDX) in a keeex self statement

2. a signing public key and a signature as part of a keeex signature statement

where a new hash can be computed over the entire file except for the bitwise hash and
signature above and compared as equal to 1.

It can be easily assessed that

a/ if a change to the hash is made, it becomes incorrect,

b/ if a change is made to the signature it becomes incorrect,

c/ if a change to any other byte is made then both the hash and signature are wrong and

d/ no option exists to change the signing authority since it would change the hash itself
and result in a file with a new identifier.

Manually performing such edits and submitting the file to a verifier like https://s.keeex.me/verify
will perfectly illustrate this.

Added value stems from the fact that the file's 'self' hash is bubble babble encoded for human
readability as a list of five letter words where consonants and vowels alternate for
pronounceability.

Also useful comes the fact that since a file's hash is plaintext ascii encoded and can be
indexed by search engines, it can be used within another file to denote the first file, a possibility
called a 'reference', as almost any keeexed file will contain.

For all these reasons and more, the file's hash according to KeeeX has been given a non
ambiguous new name: since the early days in 2013, this 'identifier' has been called an 'IDX'. An

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

https://s.keeex.me/verify

KeeeX Universally Verifiable Files V2 2025 (1.1)

IDX thus:

is computed over both the content of the original file and the content of the metadata.

excludes parts of the file where hashes, signatures and otherwise reserved space are
stored.

is encoded to facilitate human readability, content based indexing, human exploitation as a
kind of DOI (Digital Object Identifier) and inter file reference and linking.

Although there is only one mandatory KeeeX Statement in a keeexed file (the self
statement),
it is rare to find a file with only this statement, as other statements provides
important
authentication information and details.

As per version 2.0 was also introduced a new multihash algorithm to warrant outstanding
durability of evidence.

2. Explaining the KeeeX Statements Version 2.0
This chapter presents the version 2 of the KeeeX metadata statement language as can be
found within any file keeexed at this level (if no version is mentioned in a keeexed file this
means that it is in v1). This v2 allows for a number of new features compared to the v1,
including parallel additive multi hashes, incremental or multi level keeexing, delegated
signatures, registry mapping (that falls within the scope of a new granted and pending patent)
and a replacement for 'protected' statements: the 'reserved' statements.

For readability in the sequel, the syntax will not be presented formally but rather by the
example. It is interesting that you open a keeexed file on the side in a text editor to match this
literary content. Again, maybe the one you're currently reading.

2.1. Rationale
The KeeeX metadata language was crafted to obey a number of key principles. Here are a few.

2.1.1. Frugality

Because the KeeeX technology is used by the industry for file formats that can result in very
small files (e.g. markdown, html, pdf, xml, json...), and also because it should be used in
network intensive situations like social networks or streaming, the metadata size added to the
initial file payload should not be exaggerated. Indeed, KeeeX metadata size typically falls within
the 1K-2K range per file. Specific implementations may even be designed to equip files with
less than 300 bytes of metadata.

2.1.2. Auditabity, readability

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

Also it was chosen since inception that KeeeX metadata should be plaintext human readable
even in binary formats, for auditability and indexability reasons. No obfuscation or obscure
encodings come to play.

2.1.3. Security, resistance to injection attacks

Because a keeexed file's hash resides inside the file itself, it's value cannot be computed over
the entire file. It was chosen however to preserve the default property that any change made to
a file from byte 0 to end can be detected, unless the user decides otherwise.

A special kind of statement called reserved allows for excluding more space from the hash
computation under strict control. Since reserved statements can be signed (these signatures
where possible in v1 but they are enforced by the syntax in v2) change detection from byte 0 to
end remains true. Reserved statements also mention their "purpose", which allows for human
verification of adequacy without further automation of semantic verification. Bindings between
reserved statements and delegated or indirect signatures also enforce added control.

Under those settings, a keeexed file's embedded hash (IDX) is indeed a digital objet identifier.

2.1.4. Human use, indexability

Everybody knows that hashes appear as binary garbage and cannot be referred to in a
conversation or at least part of them memorized. Within plaintext KeeeX metadata, IDX are
Bubble Babble encoded so that they are pronounceable, memory and search engine friendly
which proves outstandingly useful since a file's hash actually behaves as the unique identifier
for a unique file.

Furthermore, KeeeX helps users clone the file's hash in positions exploited by file processors.
For instance, if you view this file under the form of a keeexed html, you should read it's very
own IDX here :

xidev-vepid-zicud-hopog-kiloz-kasuh-sycim-fofel-renym-fonur-hohig-zeneg-cogol-narys-
cafeb-lopan-lixix

otherwise the placeholder text

zuzi-ntinen-cudi-bfudab-poru-hsalup-leti-nsehoh-polu-cbazec-dahy-
rgogun-roke-hvusin-fato-
ztymabf-exar

will show up, a behavior that will be explained later.

If you read a keeexed pdf version of the same content, the author may have taken the provision
to display the file's identifier in a overlay at page bottom for instance. You can test searching
your disk for the first words in the matching name.

2.1.5. Sovereignty

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

https://bohwaz.net/archives/web/Bubble_Babble.html

KeeeX Universally Verifiable Files V2 2025 (1.1)

A KeeeX verifier remains a simple program that only scans files in search for metadata
statements. It is so simple it can easily work within web pages that never leak information
outside beyond optional hashes (when time-stamping or blockchain anchoring was used) and
perfectly operate offline.

Of course indeed the KeeeX tool suite also lets our users produce files on premises in
absolutely sovereign conditions, no matter if backend, mobile or web based apps are used.

2.1.6. Durability

Some files require very long lasting protection against forgery. Think for instance about pay
slips, or diplomas. KeeeX addresses this by way of a novel parallel cascading multihash
algorithm that helps the user freely combine the effects of chosen hashing algorithms in a way
that differs from usual parallel or piping combinations. This is detailed in annex 4.

2.2. Quick overview of the KeeeX metadata statements
KeeeX proposes a limited list of metadata statements :

self : this is where file hashes or IDX reside

name : a place to declare names attached to the file (translations included)

ref : where references to other files or concepts are set

signature : this is where the signatures of hashes or reserved data reside

prop : the statement used to attach key/value properties to a document

reserved : a statement to prepare free space for data that will be known after the hashes
are computed`

license : signed information about the license of the user who created the file

Every statement has one or two values plus optional extra parameters for semantic details.

2.3. Examples
The two examples below illustrate how KeeeX metadata show up in usual files. 256 bit hashes,
digital signatures and even timestamps are fairly long so they have been redacted for "clarity"
by escaping most of their text using [...] . Also escaped are confidential details in
descriptions or names.

Predefined property names start with "kx." .

Provisional or beta property names start with "prekx." (these properties are not
documented here until they are promoted but future verifiers will commit to extract and
display their values)

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

User defined custom property names are free (as AIEdited below : an example of AI
Labelling) .

Note : in the examples below, as possibly in other code samples in this document, any
occurrence of the string keeeX is a replacement for keeex used to prevent undue processing
of sample metadata by a KeeeX processor, in the intent to make the edit clearly visible

2.3.1. Metadata in a document file keeexed using KeeeX Fusion

keeeX self xuket-sucop[...], {kx.main:2,kx.app:@keeex/js-
fusion@7.1.4,kx.decode:raw,kx.format:raw} xeeek

keeeX self 0a0[...]bd5, {kx.algorithm:sha256,kx.encoding:hex,kx.recursive}
xeeek

keeeX license "KeeeX|xonaf-nyzuc[...]|prod", "2025[...]26Z|HEA[...]tg=",
{kx.mode:online} xeeek

keeeX name "[...]", {main} xeeek

keeeX prop "kx.description", "[...]" xeeek

keeeX prop "kx.author", "[...]" xeeek

keeeX prop "prekx.aiTags","[...]" xeeek

keeeX prop "prekx.aiGenerated","false" xeeek

keeeX prop "AIEdited", "5%", {prompt:translate to EN,model:gemma3n:e4b} xeeek

keeeX prop "kx.afterbc", "BC|ETH.main|23240150|288[...]d5a|2025[...]19Z" xeeek

keeeX signature "19r[...]UJ5", "2025[...]78Z|HIGt[...]XI=",
{kx.sigType:bitcoin} xeeek

keeeX signature "162[...]qRM", "---[...]---|cGx[...]k0=", {kx.sigType:bitcoin}
xeeek

keeeX prop "kx.time", "2025-08-28T14:17:36.656Z" xeeek

This file also illustrates the presence of still pending signature (the second).

2.3.2. Metadata in a Photo file produced and keeexed using Collect And
Prove

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

keeeX self xetez-tabyv-[...], {kx.main:2,kx.app:@keeex/js-
fusion@7.2.1,kx.decode:raw,kx.format:jpeg} xeeek

keeeX self 91b[...]479, {kx.algorithm:sha256,kx.encoding:hex,kx.recursive}
xeeek

keeeX license "License[...]25|xolik-[...]|prod", "2025[...]19Z|HNd1a[...]pqQ=",
{kx.mode:offline} xeeek

keeeX name "Collect And Prove Media [...]", {main} xeeek

keeeX prop "kx.description", "" xeeek

keeeX prop "kx.author", "Collect And Prove App" xeeek

keeeX prop "prekx.appName", "Collect And Prove" xeeek

keeeX prop "prekx.appOs", "android" xeeek

keeeX prop "prekx.appVersion", "10.8.0" xeeek

keeeX prop "prekx.aiTags","car,door,bump", {model:tensorFlow} xeeek

keeeX prop "prekx.aiGenerated","false" xeeek

keeeX prop "aiEdited", "0%" xeeek

keeeX prop "KEEEX_UNIQUE_SCENARIO_KEY", "841[...]00c" xeeek

keeeX ref robez-[...]-nixor, {kx.feature:geolocation} xeeek

keeeX prop "kx.geolocation.status", "ok", {kx.id:0} xeeek

keeeX prop "kx.geolocation.accuracy", "12.86400032043457", {kx.id:0} xeeek

keeeX prop "kx.geolocation.altitude", "122.08001708984375", {kx.id:0} xeeek

keeeX prop "kx.geolocation.heading", "0", {kx.id:0} xeeek

keeeX prop "kx.geolocation.latitude", "[...]", {kx.id:0} xeeek
keeeX prop "kx.geolocation.longitude", "[...]", {kx.id:0} xeeek

keeeX prop "kx.geolocation.timestamp", "2025[...]000Z", {kx.id:0} xeeek

keeeX signature "193T[...]bm4", "2025[...]81Z|IFj[...]MMs=",
{kx.sigType:bitcoin} xeeek

keeeX signature "13qP[...]AgY", "2025[...]85Z|H2X[...]JM=",
{kx.sigType:bitcoin} xeeek

keeeX prop "kx.time", "2025-08-28T13:30:42.146Z" xeeek

2.4. Syntax Overview
A KeeeX statement is located between two keywords: keeex and xeeek .
The content of a
statement follows this syntax:

keeex <type> "<value1>"[, "<value2>"][, {extra}] xeeek

Values can optionally be enclosed within delimiters (see below).
 value2 is optional, depending
on the statement type.
 extra is a key-value structure whose format is described in a following
section.
It is enclosed in brackets.

At verification time the entire statement text will participate in the hash computation except for
the self , signature and reserved statements. In all cases however the hash computation
will at least span over the statement 'head' that includes the statement type and over the tail
that includes the 'extra' :

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

keeex <type> and [, {extra}] xeeek

This prevents any keeexed file from a tentative edit that would add or remove a statement yet
keep the same IDX value.

2.5. Text encoding
Statements are ASCII-only text.
Non ASCII characters (code point over 127) are encoded using
URL-like escape sequences.
The only exception is the % character (37) encoded as %25 to
make the transformation fully
reversible.

In addition to this encoding, all value strings (value1 and value2) are escaped as JSON
strings,
which means that double quotes are escaped, and the escape symbol (\) is escaped
too.

Some injection methods cause specific modifications to the injected text.
If decoding the
written metadata requires more conversion than the default, the
kx.decode extra will be present
in the main self statement.
If present, the requested decoding is done before returning
effective data to the user.

2.6. Statements location
KeeeX statements may be found at different positions in a file, depending on the file format and
its requirements. Although this is often the case they may not participate in a contiguous block.

Statement location or ordering has no impact on verification, since a verifier solely needs to
collect all statements by a one time scan of the file to operate.

Typical positions are

in a location suitable to not alter the original data payload and any file processor's
behavior. Think for instance about a comment in a programming file.
if possible in a place that might be preserved by file editors across modifications, which
helps tell a modified file from a non-keeexed file. This cannot always be achieved.
in explicit free to user convenience metadata space. Think for instance about EXIF or
Dublin Core metadata in media or office files.

2.7. Statement values delimiters
The valid delimiters for statement values default to double quote (") or otherwise HTML-style
escaped double quote (").
When one style is used on a set of statements, it remains
consistent across all statements. Double quotes are used whenever possible for the sake of
readability of metadata.

2.8. Extra statement property

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

The extra property that can be optionally found in a statement defines a key-value
object.
It
is based on JSON with the following restrictions: values can only be number, boolean or string,
but not nested objects (the extra thus appears as a 'flat' object).

Extra properties whose key starts with kx. are reserved and never convey user defined
semantics.

3. Statement types
This section lists all the supported types of statements, along with their meaning and usage,
and their optional extra properties.

The only mandatory statement in a file is a self statement containing the file's IDX.

Unless stated otherwise, statements are kept in full when computing a file's IDX.

KeeeX provisions for the possibility to keeex files at several different 'heights' which means
that unless stated otherwise, the statements with a height lower than the topmost height value
for the file will be ignored. This serves for several purposes :

mainly to keeex files that may embed other previously keeexed files, as can be the case
for a zip archive, or an editor file containing embedded pictures

add a signatory or other metadata to an existing file without changing content

also for the technical usage of keeexing the same file multiple times after edits. This use
case may however in many cases be better served by the use of a reference to a previous
version.

3.1. Extra property valid with any statement type
The following property can be set in the extra of any statement.

3.1.1. kx.height extra (numeric)

If missing, it defaults to 1.
It indicates at which keeexing "height" the statement is located.
When verifying a file, only statements of the highest height are to be used; lower level
statements being discarded.

If a composite file contains other subfiles that can be extracted, the composite file can be
verified at it's own height, and extracted subfiles as well. This is so with office and zip files.

3.2. Statement self (file identifier)
This statement contains file identifiers, computed by using hash algorithms or combinations.

The identifier is set in value1 , without double quotes.
There is no value2 .

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

There are two kinds of self identifiers:

The main identifier is the file's IDX. It's extra has the numeric property kx.main .
There is
exactly one main self per height.
Other identifiers, computed using different hash algorithms and encodings that may be
present for special purposes.

To be valid, all identifiers for a given file must match the current file content minus the
placeholders reserved for self , signature and reserved statements.

Note that the current specification already supports a parallel cascading multihash for the main
self . The presence of multiple self in a file normally does not account for cybersecurity (to

strengthen the un-forgeability of the file). Instead to serve this objective the proper algorithm
sequence should have been specified for the main IDX (the multihash must involve at least two
algorithms, as explained in annex 4).

3.2.1. IDX computation for verification

Verification starts with computing the main self and comparing it to the value present in the file.

When computing a file identifier, all instances of the content of value1 for self statements
are fully skipped in the whole file, including in the main self statement itself. Also skipped are
content present into signature and reserved statements, which will be described in the
dedicated paragraphs.

It is worth noting that KeeeX allows for replicas of the IDX to appear in the file at more locations
than in the keeex self statement. This is used to place a copy of the IDX in a position that
can be exploited by a processor, for instance to display a QR Code of an url containing the IDX
when rendering an html page, or to display the IDX as part of a pdf overlay. The file you are
currently reading possibly illustrates this.

3.2.2. kx.main extra for 'self' (numeric)

Denotes the 'main' IDX identifier for the file.
Every set of statements for a given height has one
and only one kx.main self identifier.
The value is the statement specification's major version,
which is 2 for files keeexed under the current specification.
Since kx.main was a boolean in
v1, the absence of a value denotes a file keeexed in v1.

3.2.3. kx.subversion extra for 'self' (numeric)

Indicates that the file uses a subversion of the main statement versions.
Only features that
change the IDX calculation require new subversions.
A verifier checks if it knows the currently
used subversion, and displays a suitable error
message when it does not.
Files have no
subversion indicator if not required.

3.2.4. kx.app extra for 'self' (string)

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

The name of the application used to create the file.
For js-fusion for instance, this should be
something like @keeex/js-fusion@6.0.0 .

3.2.5. kx.archive extra for 'self' (numeric)

Indicates that this keeex statement level was created using the given archive level. Archive
mode for keeexing is an option that has no impact on verification. It is used for fast archival
without concern for the file behavior or appearance. A file keeexed in archive mode can easily
be reverted to its original.

3.2.6. kx.id extra for 'self' (numeric)

Identifies this self for reference in signatures or external processes.
The value defaults to 0
which applies to the kx.main self alone, where it is left unmentioned.
Explicit values of
kx.id start at 1. No two self or reserved statements may have the same kx.id value at

a given kx.height .

3.2.7. kx.algorithm extra for 'self' (string)

Specifies the algorithm required to compute the identifier.
Defaults to the value specified in the
annex 4 : sha3-256<sha256 (sha3-256 being the final output)

Valid hash algorithms include " sha224 "," sha256 ", " sha512 ", sha3-256 , sha3-512 plus
any combination of valid hash algorithms separated with a < to use multihash (as described in
the computing IDX annex).

No kx.main self may use a multihash involving fewer than 2 algorithms from the valid list.
This prevents against a malicious actor attempting to attack a given IDX by using a weaker
algorithm.

3.2.8. kx.encoding extra for 'self' (string)

Specifies the encoding used to render the IDX. It defaults to the value specified in the
computing IDX annex 4.

Valid encodings include :

"b58": base58
"bubble": bubble-babble (the default)
"hex": hexadecimal

3.2.9. kx.decode extra for 'self' (string)

The description of an injection method to indicate how data must be decoded to retrieve the
correct
initial value.
This property is named kx.decode and defaults to raw if not specified.
The possible values are:

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

raw : no special modifications
xml : escapes the characters using basic html entities encoding (> and & at least are

encoded
with their equivalent > and &)

3.2.10. kx.recursive extra for 'self' (boolean)

If present, this self is recursive, meaning it is computed on the self main value instead of on
the
file contents. This is used to obtain a quickly computed IDX from the main in technical
contexts that require so as for instance time-stamping in some cases.

3.3. Statement name (file name)
Used to indicate various "readable" symbolic names associated to the file.
This statement is
optional, but can be used to display names in automated processes.

It also allows for files to stay immune to renaming in contexts where a storage system for
instance would generate a seemingly random name for the file.

3.3.1. kx.main extra for 'name' (boolean)

Can be used to indicate to a processor a default name to display to users.

3.4. Statement prop (file property)
This allows for the storage of arbitrary key-value properties within the file.
Properties allow
users to record within the file any element pertaining to the context in which the file occurs : a
container number for a photo, a prompt or nonce for AI generated content, a label saying
whether a file is AI or human generated... More generally any possible Data.

The key is set in value1 and the value in value2 .
Properties whose name starts with kx.
are reserved and never used as user custom
properties.

For a list of predefined property key names, see the annex 3 on special properties.

3.4.1. kx.base64 extra for 'prop' (boolean)

If this property is present, the content of value2 is expected to be encoded in base64 and
must be
decoded for the user to retrieve the original data.

3.5. Statement ref (IDR reference)
Contains a reference to something (file, concept, tag, etc.) using an IDR.
The IDR is set as
value1 and reference semantics can be set in
the extra .

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

The syntax for an IDR is a bubble babble encoded IDX where the leading and trailing 'x' chars
(that are non significant) are replaced by 'r'. This allows for indexing and search engines to
discriminate among the file instances that match some IDX and the ones that refer to them.

3.5.1. kx.previous extra for 'ref' (boolean)

The special prop named kx.previous is used to indicate a reference to a previous version of
the
file.

3.5.2. kx.feature extra for 'ref' (string)

Is used to identify that a specific feature was used in the file.
The value of that extra is a hint as
to what the feature is.

Some special kx.feature values are found in the special refs annex 2, alongside with
their
interpretation.

3.5.3. kx.link extra for 'ref' (string)

Indicates that the ref is a generic link with the role described in the extra.

3.6. Statement signature (digital signature)
Represents a single signature, of a self or reserved statement.
Digital signatures are
usually made using a private/public key-pair.
KeeeX signature statements store three
informations:

an "address", related to the public key
the "signature" itself
the type of signature

The notion of address comes from using bitcoin-message signatures, and initially represented
what is
actually called an "address" in this context.
As of this specification this is a broader
term to identify the public part of a public signature key, in a way that makes it
possible to
verify the signature.

The signature value has two fields: a fixed-size ISO-8601 date-time (down to the
millisecond),
and the signature itself.
They are separated with a | .
The date is always written as UTC with
the Z timezone indicator (this warrants a fixed size).

Example: 2021-08-20T09:18:33.379Z .

The type of signature is stored as a string value in the extra with the key kx.sigType .

3.6.1. IDX computation

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

When a signature statement is cleaned for computing identifiers, the signature (the value2) is
removed, including the delimiters (double quote or other).

3.6.2. Signature subject

By default, a signature is computed on the main IDX of the file.
Optionally, an extra property
named kx.topicId can be used.
In that case, the signature is computed on the statement
with a matching kx.id .

The whole signature subject is the content described in the previous paragraph prefixed with
the
timestamp string described above.

3.6.3. Signature placeholder

It is possible to keeex a file without computing all signatures at the same time; in this case, a
placeholder of the appropriate size is set in the value2 field. This is useful when a file must be
circulated among signatories.

It is thus not always an error to encounter a file where some signatures are missing, notably in
the signing process itself.
Within a signature placeholder, the date-time is set as ------------
------------ which makes obvious the fact that the signature is missing.

The signature placeholder itself is a string that ends with the expected signing address and is
padded to the left by repetitions of the string "placeholder".

3.6.4. bitcoin signature (parameter value of kx.sigType extra for
'signature')

These signatures are based on bitcoin-message signatures.
This is the format typically used to
sign classic bitcoin transactions, and includes the
mechanisms to convert a public key to an
"address" (which is used as the address field).

All implementations are compatible with this kind of signatures.

3.6.5. x509 signature (parameter value of kx.sigType extra for
'signature')

These signatures use standard protocols to create digital signatures.
The public key is backed
by a full certificate.
The check of the certificate's emitter is left to the verification process.

For these signatures, the address is the full X509 certificate in base64 with the BEGIN/END
delimiters (PEM).
The signature itself is also stored in base64.

3.6.6. Complex addresses

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

Some signatures can have a special address string which requires further interpretation before
verification.
These cases are described in the sections below, according to the following:

If a signature statement extra contains the kx.indirect boolean property, then the
address
field is used differently : it represents a trusted peer which must have proposed

the actual address to use for computing the signature. This requires an auxiliary reserved
statement.
If a signature statement extra contains the kx.delegate boolean property, then the
address
field is checked differently.

If both kx.indirect and kx.delegate are present, kx.indirect is resolved first.

3.6.6.1. kx.indirect extra for 'signature' (boolean)

Instead of storing the actual signature address in the statement, an indirect reference is used.
This reference relies on a known third-party to "link" this reference to an actual address.

The reference is a JSON string representing the following object:

{

 "ref": "<text reference>",

 "trustedPeer": "<trusted third-party address>"

}

In the presence of this kind of address, the actual address used is resolved by looking for a
reserved statement with the kx.indirectSignature extra and whose value1 equals
<text reference> .
Once found, its value2 is read and interpreted as the concatenation of

the actual address to use and a signature by the trusted third party separated by | .
The full
content of a complete value2 entry for this reserved statement looks like:

<actual address>|signature(<IDX>|<text reference>|<actual address>)>

The value2 of the signature statement must be a valid signature of the IDX by actual
address .

This scheme has the following properties:

The text reference and the trusted peer are known at the time of writing the metadata, and
are
part of the IDX
The effective address used is confirmed by the trusted peer on a file per file basis and
can't be
reused spuriously (the trusted peer signs a string that contains the IDX)
Effective signatures can use an address that is not known at the time of keeexing

3.6.6.2. kx.delegate extra for 'signature' (boolean)

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

The value2 of a signature statement having the kx.delegate extra may possibly have
been computed by a different address than the address @A1 in value1 .
(this feature is only
available for bitcoin type signatures)

If a delegation was used the effective address is resolved by:

searching for a reserved statement with the extra prop kx.delegation and @A1
in
value1

processing value2 as a comma separated sequence of delegation information in the
format specified below. Each object in the sequence (if valid) replaces the current address
by another address, ultimately providing the address to check the value2 of the
signature statement against.

Each delegation information object is a string that represents the concatenation of the following
elements separated by a | character:

delegator address in its text representation as usually used in a signature statement
(first object uses @A1)
delegate address
signature role, if applicable (if not, an empty string is used)
a date indicating the "not before" validity date of the delegation, encoded in ISO8601 (only
the
date portion) (inclusive)
a date indicating the "not after" validity date of the delegation, same as the previous field,
also inclusive
the signature of all the previous fields by the delegator address, without any concatenation
characters

These elements allow for multiple levels of delegation. No operational semantics are attached
to roles, in particular in relation with the kx.role extra. This is left to final users. The role here
is an information about the signature itself, not the signing entity. For instance this can be a
string as "Validation".

Unlike in the indirect signature case, delegation objects can be reused across multiple files,
thereby allowing a delegator to transmit signing authority.

3.6.7. kx.topicId extra for 'signature' (numeric)

When a signature is not computed on the main IDX, this property indicates on which statement
the
signature is computed.
It can reference either a self or a reserved statement.
For
reserved statements, the signature is applied to value2 .

Note that signing reserved statements restores the bitwise verifiability of files, since the content
of such reserved payload (that was not know when the file was initially processed) can still be
verified in the end.

3.6.8. kx.role extra for 'signature' (string)

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

A signature statement can provide a purely informative role indication (as e.g. "Validation",
"Endorsement", "Proof of reading"...), which is user-provided and of no significance to the
usual
signature verification process and has no relationship with the possible status of the
signing entity.

Such a role is indicated in the kx.role extra as an ASCII-string whose length is limited to 50
bytes (usual string encoding applies).

KeeeX assigns no hierarchy semantics to signature roles, even in the context of delegation.

3.6.9. kx.name extra for 'signature' (string)

The name to display as the digital signature's identity.
This value is purely informative, as it is
not actually digitally signed or endorsed by any kind of
third party beyond the file creator
himself.

3.6.10. kx.ts extra for 'signature' (boolean)

A signature can have the kx.ts extra property set; This tells the verifier that in addition to the
system timestamp present in the signature placeholder, a timestamp was created on KeeeX's
server and should be available to KeeeX tools by an api call.
Verification thereby requires
calling KeeeX's API to check the timestamp of the hash of the following elements
concatenated as a string:

signed identifier (usually the main IDX)
signature timestamp present into the signature placeholder
signature address
the signature itself

3.6.11. kx.optional extra for 'signature' (boolean)

Indicates that the related signature is not mandatory to identify the file as fully valid.
A file will
always needs at least one valid signature of the main self to be considered valid.

3.7. Statement license (user license)
The license statement is made of two values that summarize the user's license.
There are
two modes of operations at creation time: online and offline.

3.7.1. Online mode

When online mode was used at keeexing (i.e. by not providing an offline license file), the
license informations were
retrieved from the KeeeX API and embedded in the keeexed file.

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

value1 is the license text and the active user profile IDX, concatenated with a | :
${licenseText}|${userIDX}|${target}
value2 is the signature (similar to signature statements) of value1 :
${signatureDate}|${signature}

When the signature is computed by the KeeeX's server, the signable is prepended with the
signature's
timestamp, so the real signable value is
${timestamp}|${licenseText}|${userIDX}|${target} . For
the signature, the timestamp is

formatted in ISO8601.

This statement has the extra property kx.mode:online set.
Fusion's implementation should
ensure that the signature timestamp is no further than an hour
away from the current time (it
should renew it regularly, ideally at most every 30 minutes).

3.7.2. Offline mode

In offline mode, KeeeX Fusion depends on a license file to be provided.
This file is keeexed and
signed by KeeeX's license key, and also contains a secondary signature
similar to the one used
in online mode.
There are two differences with the online mode:

the signature timestamp is frozen at the license creation time
the extra property is kx.mode:offline

Offline license avoids checking the relative distance between the license's signature's
timestamp
and the file's creation time.

3.8. Statement reserved (reserved space with restrictions)
Reserved statements allow for holding content unknown at file creation time within their
value2 parameter.
It is frequent that such statements contain padding text since some file

formats do not resist changing length.

Reserved fields with pre defined specific meaning are described in annex 1.

3.8.1. IDX computation

When computing the file identifiers, the content of value2 is removed, including the delimiters
(they are handled in a way similar to signature statements).

3.8.2. kx.id extra for 'reserved' (numeric)

A property named kx.id in the extra of each reserved helps to identify them formally.
This
identifier is used so that a signature can target a the data provided in value2 .
In the case of
reserved statements, the signature applies to the following:

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

${mainIDX}|${value2}

The full length of value2 is used in the signature (including padding if present).

3.8.3. kx.htmlComment extra for 'reserved' (boolean)

When present, the content of value2 is surrounded by --> and <!-- and these are
removed before
retrieving the actual data.
This feature is useful to "insert" dynamic data into
HTML files.

3.8.4. kx.transaction extra for 'reserved' (boolean)

When present, value1 identifies a blockchain (or blockchain-like structure) known to KeeeX
verifiers, and value2 indicates a reference on said structure.

3.8.5. kx.base64 extra for 'reserved' (boolean)

If this property is present, the content of value2 is expected to be encoded in base64 and
must be
decoded for the user to retrieve the original data.

3.8.6. kx.flexible extra for 'reserved' (boolean)

If a reserved statement has this extra property, it is allowed to change size depending on the
effective content.
The absence of this property indicates that the statement can't change size,
and if the actual data
is shorter than the reserved space padding is used to keep it at the same
length.

3.8.7. kx.indirectSignature extra for 'reserved' (boolean)

Indicates that this statement contains informations pertaining to an indirect signature.

3.8.8. kx.delegation extra for 'reserved' (boolean)

Indicates that this statement contains informations pertaining to a delegated signature.

4. Computing identifiers (IDX, self)
When computing the identifier of a file, we process all data except for specific parts using
hashing
algorithms.

Regarding the main self statement:

files keeexed with the version 1 of the KeeeX statements used by default sha256
encoded in bubble-babble. The hash also accounted for a salt appended at the end of the

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

file.

Files keeexed with version 2 default to using sha3-256+sha256 encoded in bubble-
babble for the main idx, and do not use a salt.

The algorithms are still listed in the file, but they are enforced by the version of the
statements.
Further revisions of the statements may allow other families of algorithms to be used with V2
than the ones listed in annex 4.

The input for the hash algorithms is the 'cleaned' file where :

parts of self , signature and reserved statements are skipped as described above
replicas of the file identifiers (either the placeholders, or the effective identifiers) are
skipped

Computing a "multihash" result is fully described in the annex 4, but boils down
to this:

for each hash algorithm, process the (cleaned) file as usual
in the order specified append the output of the hash as input data for the next hash and so
on
the output of the last hash is the result

5. Conclusion
This document wishes to introduce and back the principles of KeeeX and to provide enough
information for a curious user to understand the contents of the KeeeX metadata that may be
found inside a file (as for instance by opening this file if keeexed in a raw text editor).

We hope that the details given also make the reader confident that in an ultimate situation, it
would be possible to verify a keeexed file "by hand". This is so because the way hashes and
signatures are computed is detailed and the algorithms used are named in cleartext in the file.

6. ANNEX 1 Special reserved fields
reserved statements have two properties, value1 and value2 .
While value2 can change

at any time, value1 cannot.

Reserved statements are used to store data not known when the IDX is computed.

This annex describes special reserved statements and how they should be read.
Special
reserved statements all have a special extra property that starts with kx. and are described
below.

6.1. kx.indirectSignature extra for reserved statement
Used for signature address indirection.

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

value1 must match the address text reference, while value2 must contain the actual
address to use and its signature by the trusted peer.

6.2. kx.delegation extra for reserved statement
Used for signature address delegation.
See the signature statement for more informations.

value1 is the originally expected address. value2 is the delegation informations, signed by
the original address.
Note that there can be multiple delegation informations, the maximum
depth being limited at keeexing time.

6.3. RFC3161 timestamps
If value1 is "RFC3161", then value2 must hold the full RFC3161 certificate in base64

Statement also has the kx.base64 extra.

6.4. Blockchain anchoring
value1 can be bitcoinTree , in which case value2 may contain the Merkle branch proof

extracted from a Merkle tree built at the time of anchoring. The Merkle branch connects the
file's IDX to a hash stored as OP_Return Data in a transaction on the Bitcoin network for
perpetually verifiable proof of existence.

7. ANNEX 2 Special refs
The references below have a special meaning when found in a file.

7.1. Rollup files (certificates)
relec-toluz-podys-hofev-posav-sypim-nymol-fokob-racor-deded-zibus-cyrad-typov-
nafed-gadif-bidov-kixir
This is a legacy ref, but still used in rollup certificates.
It indicates
that some extra info are found in the certificate itself, like its btcId.
In V2 the reference
statement may optionally have the kx.feature:rollup extra.

7.2. Non production files
rofet-peryg-ditib-motem-getaf-hubyr-vydim-zezes-fizut-nytib-lokyl-bobif-deled-
nysov-zukes-cocih-vexer
(together with the kx.feature:nonproduction and
kx.target:demo|test|msg extra)

Used in files whose license is identified as a demonstration/test license.
The kx.target extra
is expected to be test or demo , but can be any string.
This may also be used to manually
mark a file as non-production if needed, hence the separation
from the license statement.

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

7.3. Geolocated files
We have two versions of the geolocation informations.
The legacy version (in files produced by
the PhotoProof mobile app) and the new version.

As of this V2 files with generic geolocation info should have the following feature ref:
 robez-
sutih-fufyz-mifev-fatyk-musuk-nugas-vivab-suzoh-pyvec-soges-tofyn-pidug-gucac-
lanep-diveb-nixor
(with the kx.feature:geolocation extra).

Files with this ref will have the following props:

kx.geolocation.timestamp : UNIX timestamp of the GPS data (optional)
kx.geolocation.status : status of the geoloc:

"disabled" if the device have geolocation feature disabled
"mock" if a mockup location is detected
"ok" if everything is nominal

kx.geolocation.latitude : latitude, positive means north (optional)
kx.geolocation.longitude : longitude, positive means east (optional)
kx.geolocation.accuracy : accuracy of the position, in meters (optional)
kx.geolocation.altitude : altitude in meters (optional)
kx.geolocation.heading : compass orientation (optional)
kx.geolocation.label : label to associate to the geolocated point (optional)

7.4. Mail+Attachments zip files
These files contain the reference :

rilot-kulum-duzid-relip-figun-taden-rodun-nibop-cafob-gibad-tumur-bylyh-mygah-
mutag-pahan-bovim-maxur

Must be present with the extra kx.feature:mailattachment .

When present, the file is expected to be a keeexed ZIP file containing a mail.
The expected
content:

metadata.json : see below
body.html : the body of the mail in HTML form (either this one or body.txt must be

present)
body.txt : the body of the mail in text form (either this one or body.html must be

present)
attachments/* : attachment files

The metadata.json file has the following form:

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

{

 "subject": "mail subject",

 "from": "mail from address",

 "to": ["mail to address"],

 "cc": ["mail CC address"],

 "attachments": [

 "name of first attachment file",

 "name of second attachment file",

 "…"

]

}

8. ANNEX 3 Special properties
Some properties can be used to attach predefined semantics or behavior to keeexed files.

These statements usually involve using a prop statement with keys prefixed with kx. .

8.1. Prop kx.author
Indicates the author of a document.
This historically used a IDR as a reference to the author,
based on KeeeX Collaborative tools.

It is set by setting the author property on the mdata property when keeexing.

8.2. Prop kx.description
An informative description of the file.

It is set by setting the description property on the mdata property when keeexing.

8.3. Prop kx.time
The system date when the file is keeexed.
This is automatically set unless the
noMetadataTime property was set at keeexing time.

8.4. Prop kx.revert
Indicate how to "rebuild" the original file from the keeexed file.
This props contain a JSON
string as described in the rebuild.md file.

8.5. Prop kx.identityURL

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

Declares an identity URL used to resolve this file's signature's addresses.
The value is
expected to be a string denoting a web service url.

A sharding hierarchy is used for disk access efficiency on the server in the case very large
numbers of signing addresses are used (for instance as a result of using deterministic address
generation from a master key in the spirit of BIP32). For example, the certificate for the address
1234ABCD5678EFGH would be found at the following path on the provided service:

/.well-known/keeex/identity/certificate/1234/ABCD/5678EFGH.json

By using this feature, the keeexer of a file declares a trusted third party able to assert if a given
signing address is legitimate. This prevents using a centralized source of trust and allows for
seamless automation of verifiers. This also allows the service to deliver personalized identity
details.

8.6. Prop kx.afterbc

Holds a string indicating a recent public blockchain block.
The string format is dependent upon
the kind of blockchain, but clearly present the name of the
blockchain as well as block and
date informations.
It is built using the @keeex/afterbc library.

8.7. Prop kx.blockchain
Indicates a property that references a blockchain.
The purpose of such a reference is to find
extra, dynamic information stored in a trusted registry or on a blockchain. This allows for
unforgeable documents to track changes that are globally available.

The value is expected to have at least the following fields, in a JSON-encoded string :

{

 blockchain: "keeexEthereum",

 modality: "ownership",

 reference: {

 type: "smartcontract",

 address: enefteAddress,

 interface: "ERC721",

 },

}

Modalities can denote ownership, status, latest version etc...

8.8. Family of Properties kx.geolocation...

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

A property with geolocation information. The family features:

kx.geolocation.timestamp : UNIX timestamp of the GPS data (optional)

kx.geolocation.status : status of the geoloc:

"disabled" if the device have geolocation feature disabled
"mock" if a mockup location is detected
"ok" if everything is nominal

kx.geolocation.latitude : latitude, positive means north (optional)

kx.geolocation.longitude : longitude, positive means east (optional)

kx.geolocation.accuracy : accuracy of the position, in meters (optional)

kx.geolocation.altitude : altitude in meters (optional)

kx.geolocation.heading : compass orientation (optional)

kx.geolocation.label : label to associate to the geolocated point (optional).

The value of the props is combined by the verifier as a JSON object containing the following
properties:

timestamp : ISO8601 string of the geolocation information
status : a string indicating the geolocation capture status. The only expected value, if

present, is "OK", but implementation might provide custom strings. This is informative
only.
latitude : value (in degrees) for the latitude; positive value goes north, negative goes

south
longitude : value (in degrees) for the longitude; positive goes east, negative goes west
accuracy : in meters

Multiple geolocation informations can be provided for a file, each with different identifiers set in
the kx.name extra. This is useful for instance when a pdf file contains several images.

Note indeed that geolocation information may be encountered in unusual (non media) file
formats.

8.9. Prop kx.exclude (subversion 1)
When present, this props bumps the subversion to at least "2.1" (statement version 2,
subversion 1).

The value2 is a string consisting of two numbers designating the start offset and the length of
an
area of the file that will not be included in the IDX computation.
These numbers are in
hexadecimal, and can be padded with either 0 or spaces.
They are separated by a dash (-).

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

They are followed by a reason for the exclusion (also separated by a dash).
This should be a
short string that justify why this area is excluded.

keeex prop "kx.exclude", " 12bc-4-CRC section" xeeek

The above statement would skip the area 0x12bc to 0x12c0 (four bytes) of the file with the
reason
"CRC section".
Multiple exclusion zones can be provided, although care must be taken
to only exclude the minimum
area required, and with valid justification, to not allow
unauthorized modifications of the file.
A prime example of exclusion zone would be other
digital signature or integrity mechanisms from the
underlying file format, such as CRC
checksums.

8.10. Prop kx.format

File format injection method.
Some late file alteration can happen, when updating a signature
of changing the content of a
reserved statement.
In those cases, the appropriate post-
processing function must be called if needed.
If kx.format is present, it is an indication for
the tool doing the change to use the appropriate
post-processing function in those cases.

8.11. Prop kx.copyright
Bind a copyright notice to data.
This can be present multiple times when needed.
There are
two forms for the value of the copyright notice:

a plain string, that will be reproduced as-is
a JSON object with the properties of a copyright notice

In the case of a JSON object, the following interface is considered:

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

interface YearRange {

 firstYear: number;

 lastYear: number;

}

interface CopyrightNoticePropValue {

 type: "notice";

 /** Optional note added at the end of the copyright notice

 note?: string;

 owner: string;

 /** Indicate that the content is a sound recording */

 phonorecord?: boolean;

 publishDate: number | string | YearRange;

}

enum CCLicense {

 attribution = "CC BY",

 attributionShareAlike = "CC BY-SA",

 attributionNonCommercial = "CC BY-NC",

 attributionNonCommercialSA = "CC BY-NC-SA",

 attributionNoDerivatives = "CC BY-ND",

 attributionNonCommNoDerivatives = "CC BY-NC-ND",

 publicDomain = "CC0",

}

interface CopyrightCCPropValue {

 type: "creativecommons";

 license: CCLicense;

 workName?: string;

 owner?: string;

 profileUrl?: string;

 workUrl?: string;

 publishDate?: number | string | YearRange;

}

type CopyrightPropValue =
| CopyrightNoticePropValue

| CopyrightCCPropValue;

A typical human representation of such statement would be:

© 2020-2025 Wile E. Coyote

Specification of what to include are taken from the following sources:

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

Copyright Alliance
epiphany.law
photocopyrightlaw.com
Creative Commons license picker
Creative Commons wikipedia page

8.12. Prop kx.classification
This property defines the data's access level.
This can be from a range of pre-defined
classification levels, or a plain custom string.
There can be multiple entries, and each entry can
indicate what they relate to.

Note that this property can be found in two ways: hardcoded in the file, or as a dynamic
property.
In the case of a dynamic property, the initial value may also be present in the file, but
the remote
ledger is considered to have the current value if it can be reached.

Each entry should follow this interface:

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

https://copyrightalliance.org/faqs/what-is-copyright-notice/
https://copyrightalliance.org/faqs/what-is-copyright-notice/
https://photocopyrightlaw.com/can-i-use-a-range-of-dates-in-a-copyright-notice/
https://creativecommons.org/chooser/
https://en.wikipedia.org/wiki/Creative_Commons_license

KeeeX Universally Verifiable Files V2 2025 (1.1)

enum BasicClassificationLevel {

 notClassified = "NC (not classified)",

 public = "C0 (public)",

 internal = "C1 (internal)",

 confidential = "C2 (confidential)",

 restricted = "C3 (restricted or secret)",

 topSecret = "C4 (top secret)",

}

interface BasicClassificationPropValue {

 type: "basic";

 level: BasicClassificationLevel;

 /** Free-form string to indicate which part of the data is classified */

 range?: string;

 /** Description of expected recipients */

 recipients?: string;

}

enum TlpClassificationLevel {

 red = "TLP:RED",

 amber = "TLP:AMBER",

 amberStrict = "TLP:AMBER+STRICT",

 green = "TLP:GREEN",

 clear = "TLP:CLEAR",

}

interface TlpClassificationPropValue {

 type: "tlp";

 level: TlpClassificationLevel;

 /** Free-form string to indicate which part of the data is classified */

 range?: string;

 /** Description of expected recipients */

 recipients?: string;

}

type ClassificationPropValue =

| BasicClassificationPropValue

| TlpClassificationPropValue;

Source for the classification levels:

TLP
Article random

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

https://www.first.org/tlp/
https://www.ceo-vision.com/fr/content/classification-des-donn%C3%A9es%C2%A0-un-enjeu-majeur

KeeeX Universally Verifiable Files V2 2025 (1.1)

8.13. Prop kx.usageRestrictions
Determine some restrictions/permissions on the data.
This property will likely evolve over time
to accommodate more options.

The basic form follows this interface:

enum RestrictionValue {

 allowed = "allowed",

 notAllowed = "notAllowed",

}

enum UsageFeature {

 aiTraining = "ai_training",

 aiGenerativeTraining = "ai_generative_training",

 dataMining = "data_mining",

}

interface UsageRestriction {

 restriction: RestrictionValue;

 note?: string;

}

interface UsageRestrictionsPropValue {

 /** The general restriction to consider for unspecified fields */

 defaultMode?: RestrictionValue;

 note?: string;

 feature?: Record<UsageFeature, UsageRestriction>;

}

Reference: IPTC GenAI opt-out best practice

9. ANNEX 4 Computing a multi-hash output
Multi-hash is a combination method that involves different hash algorithms to produce a single
hash output.
A selection of hash algorithms are picked and used according to the description
below.
The goal is to provide some level of protection against weakness in a single algorithm
for
long-term applications (by weakness, we consider situations were an attacker could
produce a different input that would
have the same hash output).

9.1. Basic layout
Assuming three hash functions named H1, H2 and H3, each producing varying length of
outputs.
The input data is named d, and the output hash is H.
Concatenation of buffers is

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

https://iptc.org/news/iptc-publishes-best-practice-guidance-on-generative-ai-opt-out-for-publishers/

KeeeX Universally Verifiable Files V2 2025 (1.1)

noted | .

The hash identifier (hashIdent) is comprised of the string representation of the algorithms
names
as defined in the "Hash identifier" section below, joined with the character < .

We compute H this way (note that the order of the hash algorithms is important):

D=hashIdent|d

h3=H3(D)

h2=H2(D|h3)

h1=H1(D|h3|h2)

H=h1=H1(hashIdent|d|H3(hashIdent|d)|H2(hashIdent|d|H3(hashIdent|d)))

This allows a semi-parallel computation of all hashes, where all algorithms process data
input
in parallel and only the final step is dependent on other hashes.

The meta algorithm itself:

1. Process all input data with each individual hash algorithms
2. For n=[N..2], N being the number of hash algorithms considered, the output
of Hn is appended in

 every subsequent hash Hm where m=[n-1..1]

3. The output of hash algorithm 1 is the final output

9.2. Hash identifier
The computation requires knowing in a deterministic way the sequence of hash algorithm to
use.
This sequence is defined as a string containing the concatenation of each algorithm
separated by a < character.

The list of currently defined algorithms names is:

sha224
sha256
sha512
ripemd160
sha3-224
sha3-256
sha3-384
sha3-512
keccak224
keccak256

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

KeeeX Universally Verifiable Files V2 2025 (1.1)

keccak384
keccak512

The string is made of these identifier, and interpreted as an UTF-8 string for the sake of
conversion in case a future algorithm name do use wide characters.

So for example, an algorithm whose identifier is sha3-256<sha256 would compute the
following hash
value from a data d :

hashIdent=`sha3-256<sha256`

D="sha3_256<sha256" | d

H2=SHA256(D)

H1=SHA3_256(D | H2)

H=H1

or else H=SHA3_256(D | SHA256(D))

or else H=SHA3_256(`sha3-256<sha256` | d | SHA256(`sha3-256<sha256` | d))

9.3. Quick analysis
Assuming a combination of three hash functions, the dependency cycles are as follow:

Output of H3 depends on D
Output of H2 depends on D and H3
Output of H1 (H) depends on D and H2 and H3

A weakness in only one hash algorithm would change the output H, since the same D value is
used in
all of them.
To keep the same value of H with a change in D would require that all hash
algorithms have
the same behavior against the change in D, which is highly unlikely assuming
the chosen algorithms
have different core operations.

9.4. Choice of algorithms
An ideal solution is be to use wildly different algorithms from different hash function
"families"
such as SHA2 and SHA3.

Performance tests show that 'sha3-256' performances in the browser (in pure JavaScript)
are
acceptable, so the V2 settles for a default of two algorithms, 'sha3-256<sha256' ('sha3-256'
being the final output).

Cheerful thanks from the KeeeX team for reading

This keeexed file is signed by 1NkZmqDcTKmAWJaJM957HJo84CFHe5JXZn and must be verified on https://services.keeex.me/verify. Its idx (hash) is:
xulip-hivik-fopag-cacyn-dihep-salaf-mevag-zomyd-mihoc-pacoc-negeb-tulih-hefin-coris-zycab-pufec-cuxex

